Assignment 2 for MATH4220

February 4, 2016

Exercise 2.1, 1, 2, 5, 6, 7, 8, 10
Exercise 2.2, 1, 2, 3, 5
Exercise 2.3, 2, 3, 4, 5, 6, 7

More on 2.3:
Extra 1. Consider the diffusion equation $u_{t}=k u_{x x}+a u$ in $(0<x<1,0<t<\infty)$ with $u(0, t)=u(1, t)=0$ and $u(x, 0)=\sin (\pi x)$, where $k>0, a$ are real numbers.
(1) Show that $0<u(x, t)<1$ for all $t>0$ and $0<x<1$.
(2) Show that $u(x, t)=u(1-x, t)$ for all $t \geq 0$ and $0 \leq x \leq 1$.

Extra 2.(a) Prove the following generalized Maximum Principle:
if $u_{t}-k u_{x x} \leq 0$ in $R=[0, l] \times[0, T]$, then
$\max _{R} u(x, t)=\max _{\partial R} u(x, t)$

Hint: follow the proof of Maximum Principle.
(b) Show that if $v(x, t)$ satisfies
$v_{t}=k v_{x x}+f(x, t),-\infty<x<+\infty, 0<t<T$
$v(x, 0)=0$
then $v(x, y)=\leq T \max _{-\infty<x<+\infty, 0<t<T} f(x, t)$.
Hint: consider
$u(x, t)=v(x, t)-t \max _{-\infty<x<+\infty, 0<t<T} f(x, t)$
and then use (a).
Exercise 2.4, 1, 2, 5, 8, 11, 14, 15, 16, 18

Exercise 2.5, 1

